Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Commun ; 12(1): 6097, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475295

ABSTRACT

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Lung/metabolism , Lung/virology , Macaca fascicularis , Male , Mesocricetus , Mice , Mice, Transgenic , SARS-CoV-2/isolation & purification , Tissue Distribution , Viral Load
2.
Elife ; 102021 09 27.
Article in English | MEDLINE | ID: covidwho-1441362

ABSTRACT

The relationship between SARS-CoV-2 viral load and infectiousness is poorly known. Using data from a cohort of cases and high-risk contacts, we reconstructed viral load at the time of contact and inferred the probability of infection. The effect of viral load was larger in household contacts than in non-household contacts, with a transmission probability as large as 48% when the viral load was greater than 1010 copies per mL. The transmission probability peaked at symptom onset, with a mean probability of transmission of 29%, with large individual variations. The model also projects the effects of variants on disease transmission. Based on the current knowledge that viral load is increased by two- to eightfold with variants of concern and assuming no changes in the pattern of contacts across variants, the model predicts that larger viral load levels could lead to a relative increase in the probability of transmission of 24% to 58% in household contacts, and of 15% to 39% in non-household contacts.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/transmission , SARS-CoV-2/pathogenicity , Viral Load , Adult , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Cohort Studies , Contact Tracing/statistics & numerical data , Female , Humans , Logistic Models , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Virus Replication/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL